Principles and fundamentals of x-ray absorption fine structure in actinides

Corwin H. Booth
The Glenn T. Seaborg Center/LBNL
chbooth@lbl.gov

http://lise.lbl.gov/chbooth

- Provides:
 - radial bond length distribution from absorbing atom's point of view
 - some electronic configuration information
- Fundamental problems:
 - speciation
 - association
 - local vs. average structure
 - vibrational properties

Advantages

- does not depend on long-range (crystallographic) order
- atomic species specific
- can probe very low concentrations (legends of μM...)
- typically uses hard x-rays, so is a bulk probe
- user synchrotron facilities such as SSRL and ALS

Disadvantages

- very short range ($< \sim 5 \text{ Å}$)
- using low Z < ~ Ca difficult
 - I. Why?
 - II. Pre-example
 - III. History and quick explanation
 - IV. Nuts & Bolts
 - V. Example(s)
 - VI. Further reading

Actinides and acetates

$$\begin{array}{c|c} H_2O \\ \hline \\ H_3C \\ \hline \\ O \\ \hline \\ H_2O \\ \end{array}$$

- Example of basic solution chemistry coupled with EXAFS.
- Organic complexation of uranyl ligands in tank wastes is still poorly understood
- Searching for thermodynamic and XAFS signatures to determine ligation.
- Experiment: identify stable acetate species in given solutions, try to draw conclusions from changes in entropy/enthalpy with regard to ligation.

XAFS results

$[\mathbf{UO_2}(\mathbf{CH_3COO})^{\mathbf{b}}(\mathbf{H_2O})_{\mathbf{4}}]^+$

Atom	R (Å)	σ	N
O	1.78	0.0411	2.0
O	2.38	0.0703	4.0
O	2.50	0.0920	2.0
\mathbf{C}	2.91	0.0500	1.3

$[\mathbf{UO_2}(\mathbf{CH_3COO})^{\mathbf{b}}\mathbf{_2}(\mathbf{CH_3COO})^{\mathbf{m}}(\mathbf{H_2O})]^{\mathbf{-}}$

Atom	R (Å)	σ	N
О	1.78	0.0344	2.0
O	2.34	0.0533	1.9
O	2.48	0.0482	4.1
C	2.87	0.0500	2.1

J. Jiang, L. Rao, C. Booth

X-ray and XAFS history

- 1895 x-rays discovered by W. Roentgen (Nobel 1901)
- "Characteristic" x-rays discovered by C. G. Barklin (Nobel 1917)
- 1912 Diffraction, M. von Laue (Nobel 1914)
- 1913 Verification of Bohr's model using characteristic x-rays (K, L spectra)
- 1922 Elastic (Thompson, coherent) vs. Inelastic (Compton, incoherent) scattering, A. Compton
- extended x-ray absorption fine structure recognized, initial attempts at explanation, Kronig
- 1941 Essentially correct theory, field still confused by Kronig's meanderings, Kosterev
- 1960's F. Lytle starts experimenting with XAFS at Boeing, E. Stern get's involved, along with his graduate student D. Sayers
- 1971 Sayers, Stern and Lytle published in PRL, stop the confusion, open up the field of local structure spectroscopy
- 1974 SSRP (later SSRL) opened the synchrotron radiation era!

- Main features are single-electron excitations.
- Away from edges, energy dependence fits a power law: $\mu \propto AE^{-3} + BE^{-4}$ (Victoreen).
- Threshold energies increase roughly as \mathbb{Z}^2 .

Discovery of x-ray absorption fine structure

- First noticed before 1920
- Many hair-brained (sort-of) explanations...
- Closest by Kronig (Z. Phys. 70, 317, 1931; 75, 191,1932; 75, 468, 1932)
- LRO (crystals) utilized gaps (actually a 2nd-order effect)
- SRO (molecules) utilized backscattering photoelectrons

Coster and Veldkamp, Z. Phys. 70, 306 (1931). See also X-Rays in Theory and Experiment (1935), by Compton and Allison, p. 663.

The dawn of a new age...

FIG. 1. Smoothed experimental EXAFS data for (a) crystalline and (b) amorphous Ge. Only the oscillatory part χ of the absorption edge is shown.

FIG. 2. Fourier transformation of the data of Fig. 1, $\varphi(r)$, a radial structure function, compares amorphous and crystalline Ge. Numbers over the peaks indicate the measured distances in $\mathring{\Lambda}$.

$$\chi(k) \propto N \sin(2kr + \phi)$$

Sayer, Stern and Lytle, *Phys. Rev. Lett.* **71**, 1204 (1971)

Interference of photoelectron waves

"I was brought up to look at the atom as a nice hard fellow, red or grey in colour according to taste."

- Lord Rutherford

 Interference of outgoing and incoming part of photoelectron modulates absorption coefficient:

$$\begin{split} \mu & \propto \left| \left\langle f \left| \varepsilon \cdot r \right| i \right\rangle \right|^2 \\ \mu &= \mu_0 (1 + \chi(k)) \\ \chi(k) & \propto \sum_i N_i \int g(r) \sin(2kr + \phi_{ci}) dr \\ g \text{ is a radial pair - distribution function} \end{split}$$

- <u>Big advantage</u>: Atomic-species specific.
- Disadvantages: very short range (<~5-6 Å), sensitive to multiple scattering, overlapping edges...

Actinides in bacteria

- possibility exists for certain bacteria to express phosphate
- These phosphates may complex with UO₂²⁺ under aerobic conditions.
- "Converting" UO₂²⁺ into a phosphate is beneficial because U-phosphates are less soluble than uranyl.
- A procedure exists to remove such actinides from a solution...

Further reading

Sir Lawrence Bragg, The Development of X-ray Analysis (Dover)

Farrel W. Lytle, "The EXAFS family tree: a personal history of the development of extended X-ray absorption fine structure," J. Synchrotron Rad. **6**, 123 (1999).

Edward A. Stern, "Musings about the development of XAFS," J. Synchrotron Rad. **8**, 49 (2001).

Boon K. Teo, EXAFS: Basic Principles and Data Analysis (Springer-Verlag).

- D. Konigsberger and R. Prins (ed.) <u>X-Ray Absorption: Principles</u>, Applications, Techniques of EXAFS, SEXAFS and XANES (Wiley).
- J. J. Rehr and R. C. Albers, "Theoretical approaches to x-ray absorption fine structure," Rev. Mod. Phys. **72**, 621 (2000).